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Part I: Lg attenuation coefficients in China and surrounding regions 

1.1 Introduction 

At regional distances along continental paths, seismograms are characterized by Pn, Pg, Sn 

and Lg phases. Lg often has the largest amplitude coda signal for stable continental paths. Lg 

has been modeled successfully as a sum of higher-mode surface waves with an approximate 

group velocity of 3.5 km/s (Knopoff et al., 1973). Since the amplitude of the Lg wave is related 

to crustal attenuation and scattering, its amplitude has been used to estimate the value of crustal 

Q (e.g., Herrmann, 1980; Shin and Herrmann, 1987). For the tectonically active western United 

States, Lg Q lies within the range between 140 and 300. Low Lg Q was also found on the 

Turkish-Iranian Plateau by Nuttli (1980) and Wu et al. (1996). In contrast, the eastern United 

States and Canada have higher Lg Q values of about 1000. These results indicate that there 

exists a strong positive correlation between Lg Q and regional tectonic activity. 

The unique properties of Lg make it useful for estimating event magnitudes and yield 

estimates for explosions. In stable continental and shield regions, large Lg amplitudes can be 

seen at large distances because of the low anelastic attenuation in these regions. Thus, it is 

believed that Lg has the potential for yield estimation with high accuracy. Nuttli (1986) and 

Patton (1988) obtained yield estimates of Nevada Test Site (NTS) explosions using Lg wave 

amplitudes. Hansen et al. (1990) used regional Lg phases recorded at a single station to estimate 

source size. They found a very small scatter in the plot of mb versus RMS Lg amplitudes and 

indicated that Lg amplitudes give a reliable estimate of the relative magnitude of a nuclear 

explosion. However, due to the various attenuation properties associated with variations in 

geologic, tectonic and topographic structure, it is necessary to develop an empirical basis to allow 

for correction of attenuation of the Lg phase. 

1.2 Data 

Regional network data from the CDSN (Chinese Digital Seismic Network) and from IRIS 

(Incorporated Research Institutions for Seismology) stations were retrieved from the IRIS-DMC 



(Data Management Center). Location information for these stations is listed in Table 1 and is 

depicted on a map in Figure 1. All stations contained three component broadband sensors 

recording in triggered mode at 20 samples per second. This data set consisted of seismic events 

with body wave magnitudes greater than 4.3, focal depths less than 50 km and epicentral 

distances between 500 and 1500 km. Event locations and origin times were taken from the PDE 

(Preliminary Determination of Epicenters) catalogs. Lg propagation efficiencies of the data were 

already characterized in a previous study by Rapine et al. (1997) as efficient, inefficient and 

blocked. To help separate anelastic attenuation from scattering attenuation in the crust, only 

efficient Lg waves were used. The data were further constrained by choosing only those 

earthquakes lying within a certain back azimuth around each station. 

1.3 Method 

The amplitude of Lg is defined in several different ways. Nuttli (1980) defined the third 

highest peak in the Lg wave train as the Lg amplitude. Rodgers et al. (1997) used an envelope 

mean over the Lg time window as one method to obtain Lg amplitudes. This approach was used 

as a measure of the average Lg energy within the specified time window. Some studies have 

also defined the RMS (root mean square) amplitude over the Lg group velocity window as the 

Lg amplitude (e.g., Hansen et al., 1990; Rodgers et al., 1997). Hansen et al. (1990) showed that 

RMS Lg is a stable source size estimator and can be used to provide a reliable magnitude 

estimate. This study follows Hansen's method and defines the Lg amplitude as the maximum 

RMS amplitude in the Lg group velocity window. The RMS amplitude of the seismogram is 

computed within a moving window of width N and is calculated by 

;w=[^£s2(i)]1/2 (i) 

where A(t) is the RMS amplitude at time t on the seismogram and s(i) is the signal measurement 

at time i in the time window.  A 55-second time window was chosen because it corresponds to 



Table 1. Broadband Station Locations 

Station Name Latitude (°N) Longitude (°E) Elevation (m) 

50° 

40° 

30° 

20° 

10° 

WMQ 43.821 116.175 43 

LSA 29.700 91.150 3789 

KMI 25.123 102.740 1945 

LZH 36.087 103.844 1560 

CHTO 18.790 98.977 316 

70° 80° 
Figure 1. Station location map of IRIS and CDSN stations in eastern Asia. 
Triangles represent broadband station locations. Gray contour lines represent 
2000 and 4000 m elevations. 



the average time duration of Lg waves in the region.  Hansen et al. (1990) showed that the 

length of the time window is not overly critical because of the robustness of the results.  The 

data were also filtered between 0.5 - 5.0 Hz to enhance the main part of the Lg energy. 

Attenuation of the vertical component Lg wave can be described by the relation 

A e~yA 

A(A)= °A   1/2Al/3 (2) 

1/2 

where A(A) is the RMS amplitude,   A is the epicentral distance in km, A0 is the initial 

amplitude, and y is the anelastic attenuation coefficient (Ewing et al., 1957). The (sin A) 

term corrects for geometrical spreading and the A m term is the amplitude correction for 

dispersion in the time domain. The 1/3 exponent used here was shown by Campillo et al. 

(1985) to correspond to the Airy phase.  All amplitudes were equalized to a mb 5.0 

earthquake by the formula 

(log.o A - log10 A') = mb - 5.0 (3) 

where A is the measured RMS Lg amplitude, A' is the equalized Lg amplitude, and mb is the 

body wave magnitude given from the PDE catalogs.  Nuttli (1980) explained that errors 

introduced by equalization would not change the results significantly.  An error of 0.5 mb 

would result in a multiplicative error of 3.2 in the equalized amplitude.  The attenuation 

coefficient was calculated using a grid search method minimizing the LI norm to estimate A0 

and y.  The curvature of the error surface was used to calculate the formal error of A0 and y 

(Menke, 1988).  The attenuation coefficient, y, is related to Q by y = (rcf) / (QU) where f is 

the frequency and U is the Lg group velocity.  The Lg frequency used in these calculations 

was 1 Hz with a group velocity of 3.5 km/s.  The attenuation coefficients can then be used to 

determine Lg Q for the crust in eastern Asia. 



1.4 Results 

Figure 2 shows a map of event-station paths which were used to examine the propagation and 

attenuation characteristics of Lg. It is evident that Lg paths cross over different tectonic regions 

and thus, the attenuation properties will be different for some stations. Tables 2-6 list the events 

used to calculate attenuation coefficients around each station and provide origin times, event 

locations, distances, back azimuths, and body wave magnitudes. The Lg attenuation coefficient 

for paths across the Tarim Platform, southeast of station WMQ, is 0.0030 ± 0.0005 km-1 (Figure 

3). This coefficient corresponds to a 1 Hz Lg Q value of 300 ± 50. Although this is one of the 

higher values we calculated, it is still low when compared to stable continental shields which 

have Q values over 1000. For 10 events from station LSA, the Lg attenuation coefficient is 

0.0036 ± 0.0008 km-1 corresponding to a Q of 249 ± 55 (Figure 4). The attenuation coefficient 

for KMI is 0.0067 ± 0.0005 km-1 corresponding to a Q of 134 ± 9 (Figure 5). For propagation 

paths through the mountain fold belts along the eastern border of the Tibetan Plateau, the 

attenuation coefficient was found at LZH to be 0.0067 ± 0.0009 km"1 (Figure 6). This 

attenuation coefficient corresponds to a Lg Q value of 134 ± 18 at 1 Hz. This value is the same 

as that found near KMI. Lg is highly attenuated in Burma as evidenced by the high attenuation 

coefficient of 0.0106 ± 0.0013 km"1 corresponding to a Q of 85 ± 10 (Figure 7). Back-arc 

subduction and high heat flow are most likely the cause of the attenuated Lg amplitudes in 

Burma. 



Figure 2. Map of station-event paths used for calculating attenuation 
coefficients for each station. Triangles represent station locations and 
squares represent event locations. Dark lines are the Lg paths. 
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Figure 3. Lg attenuation curve for events around station WMQ 
for backazimuths between 135 and 180 degrees. The coefficient of 

attenuation, y, and Lg Q value are listed inside the graph. The 
dashed lines represent one standard deviation from the best fit curve. 
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Figure 4. Lg attenuation curve for station LSA for events 
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Figure 5. Lg attenuation curve for events around station KMI 
with backazimuths between 260 and 290 degrees. 
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Table 2. Event Data Set for Station LZH 

Date Origin Time Latitude Longitude Distance Baz mb 

(UT) (°N) (°E) (km) (°) 

01/25/88 01:12:21 30.18 94.89 1060 234 5.4 

05/09/88 16:03:38 29.00 94.78 1157 230 5.1 

05/10/88 20:51:40 29.05 94.77 1154 230 4.9 

09/03/88 12:52:47 29.97 97.31 912 224 5.1 

05/03/89 05:53:01 30.09 99.47 781 213 6.1 

05/03/89 15:41:31 30.05 99.50 783 212 5.8 

06/01/89 18:03:43 31.58 109.05 694 135 4.6 

07/14/90 01:37:28 31.56 109.10 699 135 4.4 

10/18/93 16:35:02 30.03 98.24 846 219 4.8 

06/29/94 18:22:37 32.53 93.71 1010 250 5.8 

Table 3. Event Data Set for Station LSA 

Date Origin Time Latitude Longitude Distance Baz mb 

(UT) (°N) (°E) (km) (°) 

04/23/92 18:18:12 22.30 99.00 1135 135 4.8 

04/28/92 21:03:04 22.43 98.93 1120 134 4.6 

06/10/92 13:41:25 25.66 96.76 711 128 4.7 

01/31/93 19:33:34 25.91 101.54 1104 110 4.9 

04/02/93 21:09:52 24.82 96.58 762 134 . 4.4 

06/03/93 01:15:37 23.42 100.00 1122 126 4.7 

07/17/93 09:46:35 28.01 99.64 847 101 5.3 

12/09/93 18:26:19 25.86 96.51 678 128 4.7 

01/11/94 00:52:00 25.20 97.22 780 128 5.9 

01/11/94 02:18:06 25.25 97.22 776 128 4.5 
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Table 4. Event Data Set for Station CHTO 

Date Origin Time Latitude Longitude Distance Baz mb 

(UT) 

17:04:46 

(°N) 

11.81 

(°E) (km) O 

09/30/93 92.53 1038 223 5.4 

12/09/93 18:26:19 25.86 96.51 825 342 4.7 

05/29/94 14:35:54 20.45 93.94 558 290 4.7 

07/24/94 23:39:07 25.04 92.68 950 318 4.7 

11/22/94 15:38:35 13.56 95.72 677 211 4.9 

Table 5. Event Data Set for Station WMQ 

Date Origin Time Latitude Longitude Distance Baz mb 

(UT) (°N) (°E) (km) (°) 

04/13/89 02:07:89 34.18 96.71 1322 141 4.4 

04/30/89 12:28:38 36.20 99.86 1335 125 4.8 

09/19/90 08:05:57 38.00 88.94 655 170 4.4 

02/26/91 15:38:42 34.54 91.61 1085 161 4.7 

08/10/91 20:21:52 33.91 92.16 1167 159 4.7 

02/03/92 15:44:23 34.50 93.15 1137 154 4.7 

06/10/92 02:37:01 38.62 90.15 613 160 4.4 

09/04/93 20:22:30 37.19 94.61 940 139 5.1 

09/05/93 22:40:27 37.19 94.64 941 139 5.1 

10/02/93 08:42:33 38.19 88.66 631 172 6.2 

10/02/93 17:23:33 38.17 88.69 633 172 5.6 

10/02/93 23:50:00 38.36 88.88 615 170 4.8 

10/12/93 20:49:23 38.28 88.60 620 173 4.7 

08/14/94 07:38:28 34.87 89.23 1003 172 4.4 

08/27/94 07:41:42 38.20 98.36 1089 121 4.7 

13 



Table 6. Event Data Set for Station KMI 

Date Origin Time Latitude Longitude Distance Baz mb 

(UT) (°N) (°E) (km) (°) 

02/12/89 07:55:48 26.22 96.87 600 283 5.0 

03/08/89 20:02:04 26.99 92.75 1018 284 5.1 

03/08/89 18:57:01 25.45 95.56 622 275 4.8 

06/23/91 10:04:00 26.64 93.19 969 282 5.3 

06/10/92 13:41:25 25.66 96.76 603 277 4.7 

12/09/93 18:26:19 25.86 96.51 630 279 4.7 

04/06/94 07:03:28 26.19 96.84 603 283 5.6 

1.5   Conclusion 

High quality digital data were obtained from stations located in China and its surrounding 

regions. Lg wave attenuation is estimated from these data for continental paths around CDSN and 

IRIS stations. Lg attenuation coefficients are calculated from RMS vertical component 

amplitudes and are used to determine Lg Q values for the crust in China. The Q values of 1 Hz 

Lg waves vary from approximately 100 to 300 for the stations under investigation here. Higher 

Q values are seen from paths crossing the Tarim Platform. Lower Q values are found in Burma, 

southern Tibet, and along the mountain fold belts that border the eastern Tibetan Plateau. The 

overall low Q values found in China are similar to Q values found in the western United States 

and the Iranian Plateau and could correspond to a similarity in the tectonic history of these 

regions. The calculated attenuation coefficients will be helpful in creating regional magnitude 

formulas for China and its surrounding regions. Lg amplitudes and a knowledge of the 

attenuation of Lg can also be used to estimate yield size of nuclear explosions in the region. 

These results will be useful for monitoring a nuclear test ban treaty. 

14 
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Part II: Lateral variation of Pn and Lg propagation at CDSN Station LSA 

2.1 Introduction 

For continental paths, the regional phase Lg can be modeled successfully as the sum of higher 

mode surface waves or as a superposition of shear waves multiply reflected within the crustal 

waveguide with an approximate group velocity of 3.7 - 3.2 km/sec (Press and Ewing, 1952; 

Bouchon, 1982). The propagation of Lg is sensitive to the attenuation properties of the crust and 

heterogeneity of the crustal waveguide (Campillo, 1987; Husebye and Ruud, 1996). For regional 

distances, the phase Pn is the first arrival for event epicentral distances greater than about three 

degrees. The propagation of Pn can be modeled as a sum of whispering gallery waves in a 

sub-Moho waveguide made up of a high-velocity mantle lid over a low velocity zone (Menke 

and Richards, 1980). The shear wave counterpart to Pn is Sn. The group velocity of Pn is 

typically between 7.5 - 8.0 km/sec and varies with uppermost mantle temperature differences. 

Many studies indicate that the attenuation of Lg is correlated with tectonic setting (Nuttli, 

1986; Chavez and Priestly, 1986; Hasegawa, 1983; Atkinson and Mereu, 1992). In terms of a 

quality factor QLg, low values of QLg near one Hertz are indicative of tectonically active areas. 

On the other hand, stable areas such as cratons are typically characterized by large values of QLg 

at one Hertz. Of course, in general, the quality factor is a function of frequency, QLg = QLg(f). 

Areas of recent tectonism typically show strong frequency dependence of QLg relative to stable 

areas. Upper mantle attenuation studies show that efficient wave propagation characterizes 

regions of low temperature, while large attenuation of the phases Sn and Pn is diagnostic of 

heating and partial melt in the upper mantle (Barazangi and Isacks, 1971; Kadinsky-Cade et al, 

1981; Whitman et al, 1992). 

The purpose of this study is to investigate lateral variation in the attenuation of Lg and Pn 

which propagate to the CDSN station LSA from epicentral distances out to 1200 km. The data 

are analyzed on an event by event basis to map azimuthal changes in the apparent attenuation 

17 



and correlate the variations with tectonics and surface geology. The attenuation of both Pn and 

Lg is characterized by a constant Q model for narrow frequency bands near one Hertz. 

2.2 Method 

The method for estimating lateral heterogenities in attenuation utilizes regional spectra from 

events with varying distances and azimuths. The analysis assumes a simple earthquake source 

spectrum uniquely characterized by the moment and a frequency independent, constant-Q model. 

The displacement amplitude spectrum of a signal arriving from a source at a distance r is 

A(f,x)=S{f)I(f)G(r)exp^£- (1) 

where f is the frequency, vg is the signal group velocity, S(f) is the source spectrum, 1(f) is the 

instrument response, G(r) is the geometric spreading function, and the exponential term is the 

effective signal attenuation characterized by the quality factor Q. The attenuation of seismic 

signals involves both the absorption and scattering of energy. The quality factor in (1) is the sum 

of two terms representing the contributions of these two attenuation mechanisms and is 

sometimes called the apparent quality factor. The separation of attenuation into anelastic and 

scattering contributions is beyond the scope of this study. There are several effects which may 

influence the spectral amplitude which are not included in (1). The site response is known to 

depend strongly on local geology. In this study, the site response is assumed to be constant over 

the relatively narrow frequency bands considered. Additionally, the assumed source model 

spectrum does not include contributions from radiation pattern or source complexity. Although 

these effects are not explicitly included in (1), the simple spectral amplitude representation allows 

a self-consistent theoretical characterization of the lateral variation in the observed spectra. 

The source spectra were assumed to have a simple form with a high frequency decay of f2 

above the corner frequency which scales with the inverse cube root of the moment, 



S(f)=—4-^ f=kvR(^)^ (2) 
l+f2/f'c 

c        P      7M„ 

where S0 is a constant, fc is the corner frequency, k is a constant, vp is the shear wave velocity 

at the source, A a is the stress drop, and M0 is the moment (Whitman et. al, 1992; Brune, 1970). 

The moment was estimated from the moment magnitude scale log M0 = 1.5 Mw +16.1 with 

Mw=mb for the range of event magnitudes considered in this study (Hanks and Kanamori, 1979; 

Kanamori, 1983). The constant k ~ 0.33 for shear waves and k ~ 0.50 for compressional waves 

(Brune et. a/., 1979; Molnar et. al, 1973). The stress drop was assumed to be 1 x 108 dyne/cm2 

and the shear wave velocity was taken to be the crustal average vg = 3.5 km/sec. As in all 

spectral decay studies of attenuation, there is a trade-off between the assumed high frequency 

spectral roll-off and the attenuation derived from the observed spectral decay rate. A lower 

source roll off would yield lower values of Q while a higher spectral roll off would increase the 

Q estimate. 

The observed displacement spectral amplitudes are corrected for instrument response and the 

source spectrum model.  Using (1), the linear regression problem for Q is formulated as 

In ( Di
I
f

{'f
r

)
) (1+f 2/f2

c) ) =ln(S0G(r) ) -^ (3) 

where D(f,r) is the observed spectral amplitude. The logarithm of the corrected signal spectrum 

is a linear function of frequency. The first term on the right hand side controls the intercept 

while the coefficient on f involves Q. Thus, effective Q can be estimated by fitting a straight 

line to the observed corrected log spectrum. 
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2.3 Data 

The data consist of event-triggered digital seismograms recorded at the CDSN station LSA, 

Lhasa, Tibet, from December, 1991 to August, 1995. The data were retrieved from the 

Incorporated Research Institutions for Seismology Data Management Center. The station was 

equipped with Streckeisen Model STS-1/VBB three component systems for the broadband, long 

period, and very long period data. The channel used for the calculation of propagation efficiency 

was the broadband vertical component BHZ. The data are digitally recorded at 20 samples per 

second. Event origin times, locations, and body wave magnitudes were taken from the 

Preliminary Determination of Epicenters catalog distributed by the U.S. Geological Survey. The 

location of the events used to calculate Pn and Lg spectra are shown in Figure 8 • The event 

epicenters are shown as circles and the location of the station LSA is shown as a triangle. 

Regional spectra from events with epicentral distances between 200 and 1200 km and body 

wave magnitudes between 4.3 and 6.1 were calculated. In general, the data set provides fairly 

uniform azimuthal coverage. Azimuthal variations in Pn attenuation were estimated by inversion 

of 71 events for effective Q while 93 events were analyzed for Lg attenuation. 

The Pn spectra were computed using a fixed time window of ten seconds beginning at the 

onset time of the arrival. A five percent Hanning taper was applied to the signal and to a 

pre-event noise sample. The resulting time series were zero padded to 256 samples and Fourier 

transformed. The noise power spectral density was subtracted from the signal power spectral 

density and the displacement spectral amplitude was estimated by correcting for the instrument 

response. The frequency band was selected on the basis of a signal-to-noise ratio of at least two. 

When the signal-to-noise ratio was sufficient for most of the frequency band but the signal had 

isolated spectral holes that fell below the noise level, a five point running average was used to 

smooth the signal spectrum near the spectral holes. 
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The Lg spectra were computed from seismograms with a fixed group velocity window of 3.6 

- 3.0 km/sec. A fixed velocity window was chosen so that the signal contained the same number 

of modes for all epicentral distances. This eliminates signal energy loss due to dispersion so that 

the estimated attenuation is due to absorption and scattering mechanisms only. The signal time 

series was zero padded to the nearest power of two. The resulting spectra were calculated and 

corrected for pre-event noise as in the Pn case. 

The spectra were corrected for the source according to (3) and Q was calculated from a 

straight line fit to the corrected spectra for each event. If the source calculation overcorrected 

the observed spectra, resulting in negative values for Q, the corner frequency was postulated to 

lie above the frequency band used in the inversion. In this case, Q was calculated by assuming 

that S(f) ~ S0 over the entire frequency band considered. The errors for the model attenuation 

estimates were found from the data kernel and the variance of the observed spectra. 

2.4 Results 

At distances greater than 1200 km the Lg signal is attenuated below the noise floor for 

frequencies greater than 3 Hz. Thus, the inversion for Lg was limited to frequencies between 

0.5 and 3 Hz. The frequency band for Pn was between 0.5 and 4 Hz. In these relatively narrow 

frequency bands, the data admit a constant Q fit. Some examples of theoretical fits to Pn and 

Lg spectral data are shown in Figure 9 . It should be noted, however, that in general Q is a 

function of frequency. This is especially important when trying to fit one attenuation model to 

data over a wide frequency band. 

The apparent attenuation of both Lg and Pn exhibits strong azimuthal variation. The results 

of the calculation for effective Q are shown in Figure JO as a function of event back azimuth. 

The error bars show plus and minus one standard deviation. In general, the attenuation is larger 

for events north of the station relative to events with southerly back azimuths for both Lg and 

Pn.  The solid line is a least squares fit to a function of the form A + Bcos0 + Csin0, where 0 

22 



bß 
r-1 

—1—1—I—1—1— " 
 ,.. .,,,,,,    ,       , 

CO Tf «r> CN co 
II <N 

.    II n 

oo      jr O               df 
■*      K. iri              4 
ii     J* w II              i- . 

■ X)       fl pi X3                  ? 
E    / s      C 

co      x ^ m          (T 
■    II         X 

<    1 
"5, 

>> 

■ co         F*     ■ 

tu        £ 
PQ    7) o <       t c PQ      1 

v>   > 
' CT 

2> 1    # 00    > UH CM    sT ro   J O    <£- 
II    1 VO    > • <   k <  A 

i                i 

6 

o I.I. 

N 

>> 
Ü 
a 

to £5 

" CT 
£> 

P-, 

» —'■ 1 1  f~J'' 

o 
ON 
r-* 

II a      u 
©              J> 
U">            / . 

n ' II        / 
•°        /? £        f 

n "    *—<                    l\         ' 
N co         /J 
X CO          ^ 

II        i 
■9       I       • 

c ffl      L> 3 t^0"^ 
cr 

■ % 7 
fe CN    (7 

o   r^ \o  i> 
II // 

' <l/ 

0 
./     . 

1   i i_   u    1 

SI 
X 

* >-> « o 
c 
(U 
3 
cr 

N   D 

■"" P"" p P"'' 

o o ON 

II a \ * •I                 \l 

SO         1 VO         (1 
■*'  / O </-i         <| 

II  < II           1 JD      \ -°          ß s   r> £       f 
■ 00      /P "'s? ON               fl Tf   n X CM           /\ 

s cr 

ii     r 

■9  f   ■ 
PQ    ^ 

o A 

CD 

-ü V 
oo <1 ON       |\ 
CN P 

T~~l       / / 
II   <k »   /J 

^ 

10 • II   \( 
< ;S 

> 
- ■  (j 

L,,.      1       1       U.M.. 

Iß 
6 

0 

j     ' 

ON 

8 
3 
60 

"S a cr 
0) 

23 



0.009 

0.008   - 

0.007  - 

0.006   - 

1/Q    coos 

0.004 

0.003 

0.002  - 

0.001 

-150 -100 -50 0 50 100 150 

Event Backazimuth 

0.009 

0.008 

0.006 

1/Q       0.005 

0.004 

0.003 

0.002 

0.001 

-150 -100 -50 0 50 100 150 

Event Backazimuth 

Figure 10 

24 



is the back azimuth. These results indicate an effective attenuation of QPn ~ 240 for northern 

raypaths and QPn - 670 for southern raypaths. Likewise, the attenuation of the crustal phase Lg 

is characterized by QLg ~ 520 for events north of the station and QLg - 340 for southern events. 

2.5 Discussion 

The lateral variation in the transmission efficiency of Pn and Lg in the area considered in this 

study is consistent with previous observations. Regional Sn propagation efficiency was mapped 

qualitatively by Rapine et al. (1997). The authors found that for the station LSA, Sn propagates 

efficiently across the Himalayas and throughout southern Tibet, but is severely attenuated when 

crossing the north central portion of the Tibetan plateau. The same region of poor Sn 

propagation was observed by Ni and Barazangi (1983) and McNamara et al. (1995). This is 

consistent with the observations of low QPn for events north of LSA and relatively high quality 

factors for southerly events. The observed strong Pn attenuation for events north of LSA can be 

explained by partial melt in the upper mantle. Partial melt may result from a mantle rich in 

crustal material due to past subduction events and the right temperature and pressure conditions. 

Water contained in the subducted lithosphere is released under appropriate conditions, effectively 

lowering the solidus temperature and enhancing partial melt. This interpretation was applied to 

the Iranian Plateau by Hearn and Ni (1994). 

Likewise, Rapine et al. find that Lg signals generated by earthquakes in northern Tibet and 

observed at LSA exhibit large attenuation, while for southern events with raypaths perpendicular 

to the strike of the Himalayas, Lg transmission is efficient. The authors also show efficient Lg 

propagation from events to the southeast of LSA. This is consistent with the azimuthal variation 

observed in the QLg values. It is widely observed that the boundaries of the Tibetan Plateau 

cause inefficient Lg propagation and even complete blockage of Lg. However, these observations 

were made at stations located far from the boundaries of the plateau. Stations near the 

boundaries of the plateau do record Lg for events outside the plateau. This indicates that Lg is 

scattered at the plateau boundaries and propagates some distance into the plateau before it is 
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completely attenuated. The results of this study are consistent with such observations and even 

indicate that at LSA, for the event epicentral distances considered, propagation across the 

southern boundary of the plateau is more efficient than propagation within the plateau itself. 

2.6 Conclusion 

Large lateral variations were observed for the attenuation of the regional phases Pn and Lg 

at the CDSN station LSA. These variations reflect the rheological properties of the uppermost 

mantle and the crust, respectively. It is evident that the complex geology of the region 

considered in this study has a significant effect on the propagation characteristics of high 

frequency regional seismic phases. It was generally observed that the propagation of both Pn and 

Lg within the Tibetan Plateau was less efficient than propagation across the southern boundary 

of the plateau. 

The results of this study indicate that north of LSA, for events within the plateau, QPn ~ 240 

for frequencies near 1 Hz. For events south of LSA with raypaths crossing the Himalayan 

boundary thrust, QPn ~ 670. This variation in Pn attenuation is most likely due to partial melt 

in the uppermost mantle beneath north central Tibet. Large S-P travel time residuals, blockage 

of Sn in the northern plateau, and basaltic and granitic volcanism at the surface all suggest that 

the upper mantle and crust beneath the northern plateau are hot (Molnar and Chen, 1984; Molnar, 

1990; Ni and Barazangi, 1983). This observation is consistent with anomalously low QPn values 

for raypaths from events within the plateau to LSA and low Pn velocities observed in the 

northern plateau by McNamara et al. (1995). 

It has been suggested that the attenuation of Lg within the plateau may be due to a 

combination of factors including scattering at complex fault systems, low intrinsic Q due to 

crustal heating, and an increased path length associated with the thickness of the crust itself 

(McNamara et al., 1996). This study indicates that for paths to LSA from events to the north, 

QL ~ 340. This value is indicative of tectonically active regions and is consistent with the values 
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of QLg at 1 Hz, QLg ~ 366 and QLg ~ 400 found by McNamara et al. (1996) and Shin et al. (1994) 

for the plateau. For events to the south with raypaths crossing the southern boundary of the 

plateau, QLg ~ 520, which is closer to values of Q measured in tectonically stable areas. 
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